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Competition between conductive cooling and advective heating occurs whenever hot 
fluid invades a cold environment. Here the solidification of hot viscous flow driven 
by a fixed pressure drop through an initially planar or cylindrical channel embedded 
in a cold rigid solid is analysed. At early times, or far from the channel entrance, 
the flow starts to solidify and block the channel, thus reducing the flow rate. Close 
to the channel entrance, and at later times, the supply of new hot fluid starts to 
melt back the initial chill. Eventually, either solidification or meltback becomes 
dominant throughout the channel, and flow either ceases or continues until the source 
is exhausted. The evolution of the dimensionless system, which is characterized by the 
initial Peclet number P e ,  the Stefan number S and the dimensionless solidification 
temperature 0, is calculated numerically and by a variety of asymptotic schemes. 
The results show the importance of variations along the channel and caution against 
models based on a single 'representative' width. The critical Pkclet number Pe,,  
which marks the boundary between eventual solidification and eventual meltback, is 
determined for a wide range of parameters and found to be much larger for cylindrical 
channels than for planar channels, owing to the slower rate of decay of the heat flux 
into the solid in a cylindrical geometry. For a planar channel P e ,  is given by the 
simple algebraic result P e ,  - 0.46[02/(1 - O ) ( S  + 2/n)I3 when (1 - O)-'+S+l, but 
in general it requires numerical solution. Similar analyses, in which there is a spatially 
varying and time-dependent interaction between the rates of solidification and flow, 
have a range o f  applications to geological and industrial processes. 

1. Introduction 
In many industrial processes, such as injection moulding and continuous casting, 

hot fluid is forced to flow between cold boundaries against which solidification of 
the fluid can occur. Similarly, during volcanic eruptions hot magma must traverse 
a conduit from the magmatic source to the surface through much colder crustal 
rock, and some solidification of the magma is bound to occur. In both of these 
cases solidification will constrict the flow and it is natural to ask how the flow 
will evolve and whether the flow might become completely blocked. Since the rate 
of solidification depends in part on the advective heat transport by the fluid and 
the fluid velocity depends in part on the amount by which solidification constricts 
the flow, the thermal evolution and the fluid-dynamical response are intimately 
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coupled and investigation of such problems reveals interesting nonlinear and time- 
dependent behaviour. While complex interactions between solidification and flow 
occur in a variety of settings and parameter regimes, we shall consider here a simple 
fundamental problem, which arose as a model for the evolution of basaltic fissure 
eruptions. 

Solidification in magmatic conduits has often been treated as decoupled from 
the flow, and the heat transfer and solidification rates calculated as if the magma 
were at rest, thus completely neglecting any effects of advection (e.g. Fedotov 1978; 
Wilson & Head 1981; Turcotte & Schubert 1982). However, calculations for both 
rigid (Delaney & Pollard 1982; Bruce & Huppert 1989, 1990) and deformable (Lister 
1994a,b) conduits show that advective heat transfer plays a crucial role in determining 
variations in the rate of solidification along the conduit and the consequent evolution 
of the flow. Both Delaney & Pollard (1982) and Bruce & Huppert (1989, 1990), 
referred to hereafter as DP and BH, considered flow along a fissure leading from 
a source of magma at constant overpressure to eruption at the surface. The chief 
physical assumptions made in the derivation of their models were that the fissure 
was initially approximately planar and of constant width, that it was formed and 
filled with hot magma on a much shorter timescale than the subsequent solidification, 
that the rapid increase in viscosity from the magmatic liquidus to the solidus can 
be represented by a simple solidification temperature below which the magma ceases 
to flow, and that the flow itself is laminar and the conduit walls rigid. Justification 
for these assumptions and further details of the physical modelling and geological 
observations can be found in the original papers. We will not, therefore, rehearse the 
geological motivation further here. 

The geologically motivated studies may be compared with a series of studies 
(e.g. Ockendon & Ockendon 1977; Richardson 1983, 1986) of channel flow with 
temperature-dependent viscosity, which were motivated by applications to polymer 
processing. While there is clearly some rheological similarity between a sharp in- 
crease in viscosity and solidification, calculations of channel flow with temperature- 
dependent viscosity differ thermally by omitting the latent heat involved in a phase 
change and by including the possibility of thermal runaway due to viscous dissipation. 
For the case that viscous dissipation is negligible, as in geological flows, the studies 
with temperature-dependent viscosity have largely concentrated on steady entry flows 
rather than the time-dependent problem, though there have been some recent inves- 
tigations of a thermoviscous fingering instability analogous to the Saffman-Taylor 
mechanism (Helfrich 1995; Wylie & Lister 1995; Morris 1996). 

We commence with the basic fluid-mechanical problem of solidification of two- 
dimensional laminar flow in an initially planar channel of finite length embedded in a 
cold rigid solid, and then also consider the analogous problem for axisymmetric flow 
in an initially cylindrical channel. Before calculating numerical solutions, DP and 
BH made a number of further mathematical simplifications to this basic problem, 
which are discussed in $2. In $3 we calculate solutions to the full system of equations 
in order to assess the accuracy of the previous results and extend them to a much 
larger parameter range. We are also able to derive asymptotic solutions in the limits 
of large Stefan number and large undercooling in $4, which can be used to define a 
simple approximate criterion for the flow to block completely. The axisymmetric case 
is analysed in $5, and the results and possible extensions are discussed in $6. Finally, 
we note that similarity solutions in the various asymptotic regions of the early-time 
behaviour, including the near-source effects of advection, melting and variable width, 
can be obtained analytically as described in the Appendix. 
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FIGURE 1. A planar channel of width 2w(z, t) and length H is embedded in a solid with far-field 
temperature T,. Fluid of viscosity p supplied at temperature To is driven along the channel by 
a constant pressure difference A P .  The width of the channel evolves owing to solidification and 
melting at temperature TL. 

2. Flow in a planar channel 
2.1. The governing equations 

Consider a planar channel extending from z = 0 to z = H with rigid boundaries 
initially at x = f w o  (figure 1). We suppose that at t = 0 the channel 1x1 < wo is 
filled with fluid at temperature TO and that the region 1x1 > wo is occupied by solid 
at temperature T,. For t > 0 the fluid is driven along the channel by a constant 
pressure difference A€‘, while fluid at temperature To is supplied to the channel at 
z = 0 to replace that expelled at z = H .  We suppose, for simplicity, that the fluid 
and the solid are indistinguishable except by phase and have a common solidification 
temperature TL, where T, < TL < To. As a result of solidification and melting, the 
phase boundary defining the walls of the channel evolves to x = +w(z, t ) .  

We define a dimensionless temperature by 

T - T, 

To - T, 
o =  

and non-dimensionalize the remaining variables with respect to the scales 

where p is the dynamic viscosity of the fluid and ~c is the thermal diffusivity. 
The parameter regime of geological interest is (ZiPwo/v)(wO/H)Q1, where v is the 

kinematic viscosity, and G,WO/K+ 1, corresponding to long thin channels and fluid 
of large viscosity and low thermal conductivity. Provided also that the Reynolds 
number Zi,wo/v is no more than about lo3 (so that the flow is laminar and not 
turbulent), it then follows that the fluid velocity can be calculated by lubrication 
theory and that alongstream conduction can be neglected in comparison with cross- 
stream conduction. In accord with previous analyses (e.g. DP; BH) and for simplicity, 
we also neglect the effects of heating by viscous dissipation and cooling by adiabatic 
decompression. 

By the usual analysis of lubrication flow, the velocity along the channel is given by 
u, = :Q(w2 -x2)/w3, where the volume flux Q is related to the local pressure gradient 
by Q = -;w3(dp/dz). The small cross-stream velocity u, can be calculated from u, 
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by local continuity and the volume flux Q can be calculated from the conditions that 
dQ/dz = 0 (even with solidification) and that the total pressure drop is unity with 
the scalings (2.2). Thus the fluid velocity is given by 

where 

Q = 2 3 (1' w-'dz)-' 

and W, denotes awl&.  
Since alongstream conduction is negligible, the temperature of the fluid evolves 

according to 

Ot + P e  u VO = 8,,, (2.5) 
where the subscripts denote partial derivatives and P e  is a modified Peclet number, 
which describes the relative importance of advection and cross-stream conduction 
and is defined by 

AP w: 
P e  = - 

I C ~ H ~  ' 

The temperature in the solid obeys the standard diffusion equation, 0, = 8,. The 
boundary conditions at the walls of the channel, the entrance to the channel and 
t = 0 are 

s w ,  = [OJt, 
O(W, z, t )  = 0, (2.8) 

O(x,O,t) = 1 (1x1 < w), (2.9) 

WGz,O) = 1 (1x1 < w), (2.10) 

Q(X,Z,O) = 0 (1x1 > w), (2.11) 
where [O,]t = O,(w+) - Q,(w-) denotes the jump in the conductive flux across x = w 
due to the release of latent heat; the Stefan number and dimensionless solidification 
temperature are defined by 

(2.12) 

where L is the latent heat and Cp is the specific heat capacity. 
Equations (2.3)-(2.5) and (2.7)-(2.11) comprise the basic problem to be solved, 

which depends only on the three parameters P e ,  S and 0. Some qualitative under- 
standing of the pattern of solidification and melting can be obtained by consideration 
of the solution at early times when the temperature gradients are confined to thin 
thermal boundary layers at x = f l .  Far from z = 0 the effects of advection are not 
felt at early times, the balance in (2.5) is between the first and third terms (0, - 0,) 
and the solution is given by that for a semi-infinite body of fluid placed in contact 
with a semi-infinite solid; the width of the boundary layer increases like t'/2 and if 
0 > the fluid solidifies at a rate proportional to t-'/2. Close to z = 0, however, 
the continual supply of hot fluid at z = 0 produces a quasi-steady boundary layer in 
the fluid in which there is a balance between alongstream advection and cross-stream 
diffusion, and the large heat flux across this boundary layer causes melting of the 
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channel walls. On the assumption that the shear rate close to the wall is 0(1), a 
balance between the second and third terms ( P e ( w  - x)& N 0,) of (2.5) gives a 
boundary layer of width O ( z / P e  )1/3.  Comparison of the boundary-layer thicknesses 
in the two regions ( t ' /2  - ( z / P ~ ) ' / ~ )  shows that the transition between near-source 
melting and far-from-source solidification occurs when z = O ( P e  t3l2).  It may also be 
noted that very close to z = 0 (actually z Q P e  t3 )  the heat flux from the fluid and the 
consequent rate of melting are so large that w is no longer O( 1) and the boundary- 
layer scalings have to be modified. Detailed analytic solutions for the boundary-layer 
structure in the three regions z 4 P e  t3, Pe  t 3 4 z 4 P e  t3/' and Pe  t 3 / 2 4 ~ ,  and for the 
matching between these solutions, are given in the Appendix. 

These qualitative arguments suggest a competition between two processes. On 
the one hand, as the temperature gradient in the solid broadens diffusively and 
solidification rates far from the source decrease, the region in which advective supply 
of heat produces melting extends down the channel. On the other hand, constriction 
of the channel due to solidification in the downstream region decreases the flow rate 
Q and the strength of advection. As discussed by BH, there are thus two possibilities 
for the eventual behaviour depending on which of these processes becomes dominant: 
if Pe  is sufficiently large then the region of melting extends along the whole channel 
before it can be blocked and the channel subsequently widens and the flow rate 
increases until the source is exhausted; if Pe  is smaller than a critical value then the 
channel becomes blocked at the downstream end and flow ceases. The critical value 
P e  JS, 0 )  is determined in the following sections. 

2.2. Discussion of previous approximate solutions 
Both DP and BH made a number of simplifying approximations to the basic problem 
in order to reduce the computational task. DP approximated the temperature in the 
solid by part of an error-function profile, chosen to satisfy (2.7) and (2.8) in which, 
moreover, S was set to zero. The temperature in the fluid was approximated by a 
two-term boundary-layer expansion of quasi-steady solutions to (2.5) in powers of 
( z / P e  )1/3 (Newmann 1969). The velocity field itself was approximated by assuming 
that d p / d z  was constant, so Q K w3 locally, rather than imposing the integral 
constraint (2.4). 

BH patched the short-time solution for z%Pe  t3/' to a subsequent evolution in 
which the full diffusion equation was solved in the solid but the heat flux from 
the fluid was approximated in a number of ways. Since the channel solidifies most 
rapidly at z = 1, it was assumed that (2.4) could be approximated by Q = $ ~ ( 1 ) ~  and 
the shear rate along the walls by the uniform value w(1). This shear rate was then 
substituted into the steady solution (Leveque 1928) for a thermal boundary layer in 
uniform shear flow past a plane wall without solidification in order to calculate the 
heat flux and then use (2.7) to obtain dw(l)/dt. 

While many of these approximations have some justification, particularly the use 
of a quasi-steady boundary-layer approach for large Pe  before the channel becomes 
significantly constricted, it is desirable to solve the full system of equations in order 
to check their accuracy. 

3. Numerical results 
In order to solve (2.6) numerically, it is convenient to map the fluid region onto a 

fixed rectangular domain (see e.g. Crank 1984). Accordingly, we define X = x/w so 
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FIGURE 2. The evolution of the half-width w(z, t )  for S = 1 and 0 = 0.9. The results have been 
made dimensional by using the illustrative geological parameters AP/H = 2000 Pam-', ,u = 100 Pa s, 
H = 2 km and IC = lop6 m's-' from BH and the marked times are in days. (a) A channel of initial 
width 2w0 = 60 cm, corresponding to P e  = 81, is blocked by solidification; ( b )  meltback is 
sufficiently strong in an 80 cm channel, corresponding to P e  = 256, to keep the flow going until 
the supply is exhausted. 

that (2.5) and (2.7) become 

s W W t  = [e,]:. (3.2) 
The z-derivative in (3.1) was represented using a flux-conservative Lax-Wendroff 
scheme and the %-derivatives using a Crank-Nicolson discretization. A time- 
dependent grid expanding away from j7. = 1 was used to resolve the early growth of 
the thermal boundary layers near the wall. The integral in (2.4) was evaluated from 
a piece-wise linear representation of w. Nonlinear coefficients were evaluated at a 
half-timestep in order to obtain a final scheme that was second order in both time 
and space. The accuracy of the calculations was tested by conservation of energy, 
by comparison with asymptotic solutions such as those described in the following 
sections, and by grid-doubling. 

In figure 2 we show the evolution of the half-width of a planar channel for S = 1 
and 0 = 0.9, for which the critical Peclet number P e ,  = 131. The variation of the 
width with z ,  even at early times, shows that the supply of heat by advection slows 
the rate of solidification near the entrance. For P e  = 81 (figure 2a) this supply of 
heat is never sufficient to produce melting over more than 4% of the channel length 
and the flow soon solidifies. For P e  = 256 (figure 2b) the stronger flow is sufficient 
to keep the channel open and eventually produce melting along the entire channel. 

In figure 3 we illustrate solutions on either side of the critical Peclet number, which 
show an initially similar conductive evolution followed by a dramatic divergence due 
to blocking or dominance of advection. The differences between the minimum width 
w( l ) ,  a mean width (?)-'I3 based on flow rate (see (2.4)) and a mean width (?)-' 
based on heat flux (see (4.4)) suggests that simplified models that neglect the variation 
with z and use only a single representative width are unlikely to be accurate. 

In figure 4 we show the critical Peclet number as a function of S and 0. For a 
given Piclet number, the tendency to block increases with the rate of solidification 
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FIGURE 3. The evolution of the minimum width w(1) (dashed), and the 'mean' widths (a)-' 
(dotted) and (w-3)-1/3 for S = 1 and 0 = 0.9 and P e  = P e ,  w 131. Also shown (solid) is the 
evolution of (w-3) - ' /3  for P e  = P e ,  +_ lo', i = -5,-4,. . . , I .  

0.1 0.2 0.5 1 2 5 10 

S 

FIGURE 4. Contours of the critical PCclet number for a two-dimensional channel 
as a function of S and 0. 

and so P e ,  increases as 0 + 1 and as S decreases. The computational cost increases 
with P e ,  owing to the increasing disparity between the small timesteps allowable by 
the Courant condition and the long diffusive timescale of solidification. 

4. Asymptotic solutions 

As S + 00, the solidification rate wt is O(S-')  and can be neglected in (3.1). We then 
rescale the along-channel coordinate by defining 

4.1. The limit S + 00 

(4.1) 
2 

W 



214 J .  R. Lister and P. J .  Dellar 

FIGURE 5. Comparison of the critical Peclet number as found from the large-S asymptotic system, 
(4.1) and (4.4), (dashed curve) with that from the full solution for S = 0.2, 1 and 5. The asymptotic 
results give good agreement even at moderate values of S. The dotted line is the combined large-S, 
large-Pe result, (4.8). 

so that (3.1) becomes 

subject to d(l,[) = 0 and 6(ji,O) = 1. This is a standard thermal-entry problem 
(Graetz 1885) for which solutions can be obtained by eigenfunction expansion or 
numerically. We write Ox( 1-, z )  = (1 - O ) f ( ( ) ,  where f is found by solving the Graetz 
problem. 

Neglect of wt also allows the temperature and heat flux in the solid to be written 
as 

(4.2) 1(1- - 2  6 - & 2 X ) i -  xx 

B ( x , z )  = 0 erfc[(x - ~ ) / 2 t ' / ~ ]  and &(w+,z) = - 0/(nt)'/2. (4.3) 
We now substitute the expressions for the heat flux into (2.7), rescale the time by 
defining z = G2t/S2 and obtain 

It is consistent with the asymptotic limit S --f co to replace S in (4.4) by S + c, where 
c is any given constant, and heuristically we choose c = 2/71., both by analogy with 
an expansion of the coefficient I I  in the half-space solidification problem (see Carslaw 
& Jaeger 1959, p. 288; or (A24 in the Appendix) and because it gives a better fit of 
the asymptotic behaviour to results for finite values of S. With this replacement the 
asymptotic system (4.1) and (4.4) depends only on P e  and the combination parameter 

The equations were solved numerically by discretizing w with z and then using 
a Runge-Kutta method to solve (4.4) as a set of ordinary differential equations 
linked by (4.1). The solutions show the same behaviour as those described in 93. In 
figure 5 we show the critical Peclet number and compare it with the results from the 
full calculation plotted against (1 - 0 ) ( S  + 2/n)/02.  It may be seen that there is 

(1 - 0 ) ( S  + 2/74/02. 
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remarkably good agreement with the large-S asymptotic at quite small values of S, 
particularly at large values of P e .  

4.2. The limit Pe  +. 00 

As P e  -+ co the temperature gradients in the fluid are confined to thin thermal 
boundary layers of width O(Pe- ' /3 )  against the walls. If 1 - 0 is 0(1) then the large 
heat flux across these boundary layers will rapidly cause melting along the length of 
the channel and the flow will subsequently increase monotonically. If the channel is to 
be significantly constricted or even blocked by solidification it follows that 1 - 0 4 1 
and hence wtOx40xx.  Thus the fluid temperature can again be calculated from solution 
of the quasi-steady equations (4.1) and (4.2). Moreover, c + l  since Pe  $1 and hence 
the asymptotic form of the boundary heat flux from the Leveque solution, 

can be used. 

of the temperature in the solid. We define a new coordinate by x' = x - w so that 
The rate of solidification can, however, no longer be neglected in the calculation 

8, - w,exl = (x' > 0). (4.6) 

Since 1 - 0 4 1, we can set 0 = 1 rather than 0 on x' = 0. The value of wt in (4.6) is 
calculated from 

0.5383 
Sw, = (1 - 0)- + OX'(O+, z ) .  w [ 113 

(4.7) 

The form of (4.1), (4.6) and (4.7) shows that the evolution in this limit depends only 
on S and the combination parameter Pe  (1  - 0)3. 

Numerical solution in this limit requires much less computation than the full 
problem since, though (4.6) still requires solution of a diffusion problem at each z ,  the 
timestep is not constrained by the Courant condition for the alongstream advection 
in the fluid. Results for the critical Peclet number scaled by (1 - 0)3 are shown in 
figure 6. Convergence to the asymptotic limit is quite slow in this case. 

4.3. Comparison of results 

Comparison of the asymptotic results for S + 00 and P e  -+ 00 shows that in the 
joint limit S + co, S( l  - 0 )  -+ 0 the critical PCclet number has the form 

((1 - 0 ) ( S  + 2/n) 
P e ,  - 0.46 

where the multiplying constant was evaluated numerically. Heuristic arguments 
leading to the same dimensional dependence on parameters, but a less accurate 
determination of the constant, were given by Bruce (1989) and Petford, Lister & Kerr 
(1994). 

In figure 7 we compare the critical PCclet number, as found from the full system of 
equations (2.3)-(2.1 l), with the values determined from the asymptotic schemes for 
S + 00 and Pe  -+ 00, and the approximate scheme described by BH. The large-S 
asymptotic scheme is the most effective approximation over the range of values shown, 
though the large-Pe asymptotic scheme provides a small improvement for S < 1 and 
P e  > 1000. 
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FIGURE 6. Comparison of the critical Peclet number as found from the large-Pe asymptotic system, 
(4.1), (4.6) and (4.7) (dashed), with that from the full solution (solid). The axes are chosen to exhibit 
the collapse of (1 - 0)3Pe ,  against S as P e  -+ co. 

2 

FIGURE 7. Comparison of the critical Peclet number as found from the full equations (solid), 
the large-S asymptotic system (short dashed), the large-Pe asymptotic system (dotted), and the 
approximation described by BH (long dashed). 

5. Flow in an axisymmetric channel 
We describe briefly the adaptations to the foregoing analysis of a planar channel 

that are required to calculate the evolution of solidification and flow in an initially 
cylindrical channel of radius wo. Maintaining the same non-dimensionalization as 
in (2.1), the velocity along an axisymmetric channel of radius w(z,t) is given by 
u, = -;(w2 - r2)(i3p/i3z), and the volume flux Q is related to the local pressure 1 
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FIGURE 8. Contours of the critical PCclet number for an axisymmetric channel as a function of S 
and 0. The values of P e ,  are much larger than the corresponding values for a planar channel 
(figure 4). 

gradient by Q = -~n:w4(dp/dz). Thus 

where 

Q = 8 (1' w-'dr)-' . 

The temperature of the fluid evolves according to 

8, + P e  u * VQ = 8,, + Q r / r ,  (5.3) 

where Pe is given by (2.6). The temperature in the solid now obeys the axisymmetric 
diffusion equation, 8, = 8,, + & / r ,  but the boundary conditions are directly analogous 
to (2.7)-(2.11). 

We define F = r / w  so that (5.3) becomes 

(5.4) 

Comparison of (5.2) and (5.4) with the planar equivalents, (2.4) and (3.1), shows that 
the effects of the axisymmetric geometry are apparent in the stronger dependence of 
flow rate on w and, more significantly, in the form of the conductive cooling. The 
heat flux outside a hot cylinder eventually decays only like l / ln t ,  in comparison 
with the faster t-'I2 decay next to a hot planar wall. Since the evolution of a 
solidifying channel typically takes many diffusion timescales owing to the buffering 
effect of the latent heat, the heat flux outside an axisymmetric channel enters this 
slowly decaying regime and, in consequence, it is harder for the advected heat flux 
to keep an axisymmetric channel open for long enough for meltback to occur. Thus 
the critical Piclet numbers for an axisymmetric geometry (figures 8 and 9) tend to be 
much larger than the corresponding values for a planar geometry (figure 4). 

5.1. Asymptotic models 
Some asymptotic progress can be made along the lines of $4, though the analysis 
is less successful in an axisymmetric geometry. By neglecting wt and rescaling the 
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FIGURE 9. Contours of (1 - 0 ) 3 P e ,  for an axisymmetric channel as a function of S and 0. 
The scaling with (1 - 0)3 removes most of the 0 dependence, as for a planar channel, but the 
dependence on S is much weaker than the S3 of (4.8). The italic numbers in the corners are the 
unscaled values of Pe,. 

along-channel coordinate by 

we reduce (5.4) to 

subject to O(1,l) = 0 and O(F,O)  = 1. Thus Or(lL,z) = (1 - @ ) F ( l ) ,  where F is 
found by solving the standard cylindrical thermal-entry problem. The heat flux from 
a cylinder of fixed radius maintained at fixed temperature is given by Carslaw & 
Jaeger (1959, p. 336, equation 8), but, unlike the corresponding flux in (4.3), is not a 
simple power law and depends on the radius of the cylinder. The large-S asymptotic 
evolution equation is thus written 

+(I - F*)O[ = oFF + OF/r (5.6) 

SWW,  = (1 - O ) F ( ( )  - 0 G ( t / w 2 ) ,  (5.7) 

where G ( t )  is the flux from a unit cylinder maintained at unit temperature. While 
0 and S cannot be grouped as in (4.4), equations (5.5) and (5.7) can still be solved 
economically as a coupled set of ordinary differential equations for discretized values 

Asymptotic analysis in the limit P e  -+ 00 leads again to (4.7), but now with Ox! 
given by solving the axisymmetric diffusion equation outside a cylinder of variable 
radius w ( t )  and fixed temperature 0. Though the leading-order expansion of F ( l )  
is the same as that of f([) in (4.5), the corrections are larger in an axisymmetric 
geometry and more accurate results are obtained if these are retained. The largest 
corrections to the Leveque boundary-layer solution are due to the curvature of the 
Poiseuille flow and of the boundary rather than to the neglect of wt. We therefore 
recommend a composite approximation for S + 00 or P e  -+ cc that is given by (5.5) 
and 

w(zi) .  

( 5 . 8 ~ )  
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FIGURE 10. Comparison of the critical PCclet number for an axisymmetric channel as found from 
the full equations (solid), the large-S asymptotic (5.7) (dashed) and the composite asymptotic (5.8) 
(dotted). All curves are for 0 = 0.7. 

This gives the critical Peclet number to within 20% in the region S > 1 and 0 > 0.6. 
Results from the two asymptotic approximations (5.7) and (5.8) are compared with 

the full solution in figure 10. 

6. Discussion 
We have analysed the evolution by solidification and melting of a hot flow through 

a channel embedded in a cold solid. There is a competition between the tendency 
of conductive cooling to narrow the channel by solidification and the tendency of 
advective supply of heat by the flow to widen the channel by melting back first 
the initial chill and then the walls of the channel. The analytic solution for the 
short-time behaviour shows that solidification is initially dominant owing to the large 
thermal gradients, but, as these decrease, melting extends over a growing region near 
the source of the flow. However, the flow rate also decreases owing to continued 
solidification at the downstream end of the channel, thereby reducing the advective 
supply of heat. The balance of this competition between solidification and melting 
thus varies with time and along the channel, but is eventually resolved decisively one 
way or another : either solidification becomes dominant throughout the channel and 
the flow is blocked, or melting becomes dominant and flow continues until the source 
is exhausted. Blocking is favoured by long, narrow channels, low driving pressures, 
large viscosities, small latent heats, large undercoolings and small initial superheats. 

We have calculated the critical Piclet number that determines whether a flow 
ultimately blocks or melts back both by numerical solution of the full equations and 
by various asymptotic approximations. These results extend previous approximate 
solutions (DP; BH) to a much wider range of Stefan numbers and solidification 
temperatures, and to axisymmetric geometry. It is notable that critical Pkclet numbers 
in an axisymmetric geometry are much larger than those in planar geometry owing 
to the slower 0(1/lnt), rather than O(t-'/2), decay of the heat flux into the solid. 
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Interestingly, pipe-like volcanic conduits are observed to be typically much wider than 
planar conduits. 

It is also worth commenting on a suggestion by BH that two-dimensional evolution 
in a planar geometry would be unstable to flow localization in the third (transverse) 
direction. The suggested mechanism - that locally increased flow increases the heat 
supply, widens the channel, reduces the flow resistance and further increases the 
flow - should also apply to pressure-driven flow of fluid with temperature-dependent 
viscosity in a cooled planar channel. However, recent studies of the latter problem 
(Helfrich 1995; Wylie & Lister 1995; Morris 1996) have shown that flow localization 
only occurs when the flow is relatively slow so that the thermal entry length is reached 
and the viscosity variations lie across the flow (as in the Saffman-Taylor instability), 
and not when the flow is relatively fast so that temperature and viscosity variations 
lie in boundary layers roughly parallel to the flow. If it can be argued that a solidified 
layer is like a very viscous boundary layer then instability would not be expected 
here, though it should be noted that the problems are not exactly analogous and this 
question requires further study before it is resolved. 

The various solutions described in $53-5 form the basis of a hierarchy of numerical 
methods, which can be ordered by accuracy and computational expense. Solution 
of the full set of equations is computationally expensive, owing to the need to take 
timesteps based on an advective timescale in order to satisfy the Courant condition, 
while following the evolution on the much longer conductive timescale. By neglecting 
awl&,  the temperature in the fluid can be assumed to be quasi-steady and the 
corresponding heat flux into the channel wall taken from a simple rescaling of the 
standard thermal entry-length problem. This approximation, which is used in (4.7) 
and (5.8), reduces the problem to calculation of heat transfer in the solid and allows 
the timestep to be significantly increased to a conductive timescale. The next level of 
approximation, which is used in the large-Stefan-number approximations (4.4) and 
(5.7), is also to neglect awlat  in the solid and then to take the corresponding heat 
flux from solutions for a fixed planar or cylindrical boundary maintained at constant 
temperature. This reduces the calculation to a set of coupled ordinary differential 
equations for the widths at a discretized set of locations along the channel. Finally, 
we note the simple algebraic expression (4.8) for the critical Peblet number that results 
from the combination of these approximations in the planar case. 

While we have analysed here the simple fundamental problem of flow through a 
channel embedded in a uniform, infinite solid of the same material as the fluid, there 
is a wide range of extensions to this problem with applications to geological and 
industrial processes. For the geological case, desirable extensions include allowing 
elastic deformation of the channel wall and considering variations wo(z) and T,(z) in 
the initial channel width and far-field temperature (Lister 1995). Industrial applica- 
tions would typically allow the chill but not the channel walls to melt and either apply 
fixed-temperature boundary conditions at the channel wall or consider a wall of finite 
thickness. It is envisaged that some of the asymptotic and numerical ideas developed 
here can readily be adapted to these problems, in each of which the phenomena of 
interest arise from the spatial and temporal interactions between solidification and 
flow. 

Appendix. A boundary-layer solution for early times 
At early times the temperature gradients are confined to thin thermal boundary 

layers near x = +w. Except for a small region near z = 0, where there is very rapid 
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melting, w is still close to unity and hence Q N +. We define X = w-x and Z = z / P e  
and can thus write (2.5) for t41 as 

8, + w-lxez + w-lw,ex - w 2 e X x  (x > 0). (A 1) 

For Z+>t3, w - 1 and the solution to (Al) can be obtained by use of the similarity 
variables 5 = X / t ' l 2  and [ = Z / t 3 / 2  (Lister 1994b, (3.8) ff.). In Z+t3l2 alongstream 
advection is negligible and the similarity solution $((, [) asymptotes to 

0 erfc{ - (</2 + A)} 
erfc( -A) 9 -  ( 5  d 01, 

where 
(1 - 0 )  

erfc(-A) erfc A ' 

-~ Sn'/2AeL2 = 0 

(The difference between the asymptotic solution A- ( 2 0  - 1 ) / d 2 ( S  + 2/71) as ;1 -P 0 
of (A24 and the approximation A - ( 2 0  - l)/n'/'S obtained by neglecting wt in 
(Al) motivates the replacement of S by S + 2/71 in equation (4.4).) In t 3 4 Z  4t3/* the 
temperature is quasi-steady and the similarity solution asymptotes to 

(1 - 0 )  /m exp(Ay - y3/9) dy 

3 01, (A3a) , 9(y) = 1 - 

where 
1 - 0  

A lm exp(Ay - y3/9) dy = ~ 

S + 0  

and y = X / Z ' I 3  = 

From (A3c) it can be seen that the approximation w - 1 in (Al)  is only valid when 
Z+>t3, as stated earlier. When Z = O(t3)  we seek a quasi-steady solution to (Al)  by 
putting 

(A 4) 

where W and Y must be solved for as functions of the similarity variable [. Substi- 
tution into (Al)  and (2.7) gives 

9,, - s-"9,1+9, = -q29,(WY2Y[) (y > 0) (A5a) 

S(31WW[Y) = [$,I!. (A5b) 

WY2Y[ = and 3cWWiY = A .  (A 6) 

It follows that the solution for 9 is given by (A3a,b) provided that 
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FIGURE 11. The (x, y )  phase plane for (A8). The near-origin similarity solution to (Al) in Z -4t3I2 is 
obtained from the trajectory that joins the singular point A = (1,l) to the origin. 

To solve (A6) we let u = (15/A)3[ and F = (15Y/A)3 so that (A6) becomes 

W = l/Fu and uFu,F'I3 = 5(FJ3. (A 7) 

x, = y - x and y, = ; y ( ~ ~ x - ' / ~  - 1). (A 8) 

We then let 2, = ln(u/6), x = Fe-' and y = Foe-" in order to obtain the autonomous 
system 

By consideration of the ( x , y )  phase plane (figure ll), it is straightforward to show that 
the desired solution is given by the trajectory that connects the singular point at (1,l) 
to the singular point at (0,O). As v -P co, we find that x - 6 e ~ " / ~ ,  y - 5e-u/6, F - u, 
Y - 51/3 and W - 1, which corresponds to the solution in t 3 ~ Z ~ t 3 / 2 .  As v t -co, 
we find that x - y - 1, F - ( ~ / 6 ) ~ / ~ ,  Y - (15[2/36A)'/5 and W - (5OA3/9[)'l5 , 
which corresponds to the solution in Z 4t3.  
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